AD~AQ87 gi6

UNCLASSIFIED

xRE;ggg%MER;2ETHQEZS¥Agzﬁ§AL LABS WRIGHT=PATTERSON AFB OH F/¢ 20/11
AN N TION METHOD FOR STRESS INTENSITY FA:

APR 80 D BAR=TIKVA TTY FAC=—£TC(V)
AFWAL=TR-80=4001




AMAO87846

h:a

N
,k’

r
\

FLE

L
e

e @IRVELE

AN EXPERIMENTAL WEIGHT FUNCTION METHOD FOR STRESS
INTENSITY FACTOR CALIBRATION

Dan Bar-Tikva, Major, IAF

Metals Behavior Branch

Metals and Ceramics Division DTIG

ELECTE
.. AUG 1 31980

April 1980

B

TECHNICAL REPORT AFWAL-TR-80-4001

Interim Report for Period Jan‘uary 1979 - October 1979

Approved for public release; distribution unlimited.

MATERIALS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

Eep— A




Clloz -

NOTICE

When Govermment drawings, specifications, or other data are used for any pur-
pose other than in connection with a definitely related Government procurement
operation, the United States Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications, or other
data, is not to be regarded by implication or otherwise as in any manner licen-
sing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Information Office (0I) and is releasable
to the National Technical Information Service (NTIS). At NTIS, it will be avail-
able to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

6Tz

DR. T. NICHOLAS NATHAN G, TUP , Chief
Metals Behavior Branch Metals Behavior Branch
Metals and Ceramics Division Metals and Ceramics Division

"If your address has changed, if you wish to be removed from our mailing list,
or if the addressee is no longer employed by your organigation please notify -
AFWAL/MLLN, W~PAFB, OH 45433 to help us maintain a current mailing 1list".

Copies of this report should not be returned unless return is required by se-
curity considerations, contractual obligations, or notice on a specific document,

AIR FORCE/36780/7 July 1980 — 300 *




. SECURI;Y'V CLASSIFICATION OF THIS PAGE (When Dete Entered)

¢ § REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1 / 2. GOVT ACCESSION NO.| 3. REGIPIENT'S CATALOG NUMBER ¢
/4 )] AFWAL - TR-88- 400 ] Ab_Ho8 7 % i
LA AT E (Al Sab Py« e T SN S, e s s o faa '“““';ZP ERIOD COVERED
XPERIMENTAL WEIGHT FUNCTION METHOD FOR /’/ Interim 6::2. or period
g: SS INTENSI FACTOR"CALIBRATTONJ Jan M = 0ct 79
f 4 s X 2 — T .
{73 9. CONTRACT OR GRANT NUMBER(:)
L_, 2 Dan Efr—h kva}
‘ QM;Et;FrOiRaMiNSG EngAoN'I‘;eg?; NAME AND ADDRESS / 10. ::gﬁﬁlﬂ E'QLKE:E:‘YT.NPURMOBJEE‘(‘:ST. TASK
{ AF Wright Aeronautical Laboratories'(AFSC) ]
; Wright-Patterson Air Force Base, Ohio 45433 g& [ 2387)p1{ 02
- 11. CONTROLLING OFFICE NAME AND ADDRESS
Materials Laboratory 7/ |_horS8 8% 7
AF Wright Aeronautical Laboratories (AFSC) ahGES
8 Wright-Patterson Air Force Base, Ohio 45433 93

& ADORESS(it different from Controlling Office) 1S. SECURITY CLASS. (of this report)

T MONILORN
% Unclassified
15s. DECLASSIFICATION DOWNGRADING |
SCHEDULE

18. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. XKEY WORDS (Continue on reverse side if necessary and identify by block number)
Stress Intensity Factor
Weight Function
Crack Opening
Fracture Mechanics

:
}
}

R0 ABSTRACT (Continue on reverse side Ii neceasary and Identify by block number) L

he weight function procedure allows one to convert stress intensity factors ;

K and crack displacement information obtained for one crack configuration and !

loading into the stress intensity factor solution for the same geometry and o
another loading. .

The feasibility of using the weight function idea for a two dimensional case
with experimental results is demonstrated in this work. Mode I stress intensity -
factor K] measurements obtained by a laser interferometric technique and -

[

(171) , :2:“” 1473 EDITION OF 1 NOV 635 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

392 664




SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)
~

égfcrack mouthJZ;;ening displacement measurements were taken for an edge
£+ cracked strip subjected to four point bending. These results were used to
construct (numerically) a weight function with the aid of a computer program
written for this purpose.

Results of K, for the same geometry with two different loading config-
urations, unifo ension and three point bending (with two different length
to width ratios) were computed.

These results agree favorably with the known solutions and demonstrate
that a set of experiments for a single loading can accurately predict the
stress intensity factor for any other loading configuration of the same
geometry. The advantage of the weight function method would be particularly
jmportant if these loading configurations are difficult or impossible to
reproduce in the laboratory. -

[

!

SECURITY CLASSIPICATION OF To'c PAGE(When Dats Entered)




AFWAL-TR-80-4001

S MACEW A o

FOREWORD

The work reported herein was conducted in the Metals Behavior Branch, :
Metals and Ceramics Division, Materials Laboratory, Air Force Wright
Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio. The
research was conducted by Major Dan Bar-Tikva, IAF, in partial fulfill-
ment of the requirements for the degree of Master of Science, School
of Engineering of the Air Force Institute of Technology.

The author would like to express his gratitude to his thesis
advisors, Dr. A. F. Grandt of AFWAL (MLLN) and to Professor A. Palazotto,
AFIT Department of Aeronautics and Astronautics, for their guidance and
suggestions during the course of this investigation. The author would
also 1ike to thank Dr. T. Nicholas of AFWAL (MLLN) for making available
the Mechanical Test Facility of the AFWAL (MLLN) Metals and Ceramics Division
and the engineering and technical staff of Systems Research Laboratories,
Dayton, Ohio for their invaluable assistance and advice.

The research was conducted during the period January 1979 to
October 1979. This report was submitted for publication in December 1979.

ACCESSION for
NTIS Write Section }
boe Buff Sectios [J

UNANRCJNCED O
JUSTH ICATION

By S
DISTRIBUTION/AYALABILITY CODES
[Dist. i and/or_SPECIAL .

{ A

iii

L ——




AFWAL-TR-80-4001

TABLE OF CONTENTS
SECTION ' PAGE

I INTRODUCTION 1
1. Background 1

2. Purpose 2

3. General Approach 2

11 THEORY 4
1. General Assumptions 4

2. Stress Intensity Factor 4

3. The Weight Function 6

4, K Calibration by Crack Tip Displacement 9

5. Crack Opening Calibration N

6. KI for Case 2 13

IT1 EXPERIMENTAL TECHNIQUE 15
1. The Laser Interferometry Method 15

2. Test Apparatus 18

3. Test Procedure 20

IV DATA REDUCTION AND NUMERICAL TECHNIQUE 23
1. K[ For Case 1 23

2. Crack Mouth Opening 24

3. Numerical Technique for KI Case 2 Computation 24

v EXPERIMENTAL RESULTS 26
1. Experimental Measurements 26

2. Data Interpolation 27

3. Crack Profile Measurements 29

4. Case 2 Loadings 36

5. Uniform Tension 36

6. Three Point Bending 37

Vi CONCLUSIONS 46




AFWAL -TR-80-4001

SECTION

APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:

REFERENCES

TABLE OF CONTENTS (CONCLUDED)

THE WEIGHT FUNCTION

JUSTIFICATION OF ASSUMPTIONS

LASER INTERFEROMETER DATA REDUCTION
COMPUTER PROGRAM DESCRIPTION

CRACK SHAPE--CONICAL APPROXIMATION

vi

PAGE

47
52

54
58
77

81




AFWAL-TR-80-4001

FIGURE
1

00 ~N O 0 B ow N

N
12
13
14
15
16
17
18

19

21

22
23

24

A-1

C-1

c-2
E-1

PSPy

LIST OF ILLUSTRATIONS

Crack Opening Modes

Crack Tip Stress Coordinates

Cracked Body Loading Configuration

Superposition

Edge Crack

Surface Indentation

Schematic Showing Fringe Pattern Generation

Typical Interference Fringe Pattern

Test Specimen

Specimen Set Up in Bending Fixture

Clip Gage Setup

Laser Beam Reflection

Test Apparatus Setup

Specimen Dimensions

Loading Fixture Dimension

Stress Intensity Factor (Nondimensional) for Pure Bending
Crack Mouth Opening (Nondimensional) for Pure Bending

Nondimensional Displacement Along Crack Surface Compared
to Orange Equation (Reference 11) Pure Bending a/W=0.436

Nondimensional Displacements Along Crack Surface Compared
to Orange Equation (Reference 11) Pure Bending, a/W=0.7517

Case 2 Loading Configurations

Stress Intensity Factor (Nondimensional) for Uniform
Tension

A Uniform Strip Under Three-Point Bending

Stress Intensity Factor (Nondimensional) for Three-Point
Bending S/W=4

Stress Intensity Factor (Nondimensional) for Three-Point
Bending, S/W=8

Loaded Cracked Body
Irwin Circular Plastic Zone Model

Typcial Stripchart Recorder Trace of Fringe Motion, lLoad
and Crack Mouth Opening

Typical Load-Fringe Motion Curve
Crack Opening Conical Approximation

vii

34

35
36

39
40

44

45
47
52

55

57
77




L]

AFWAL-TR-80-4001

TABLE

c-1

LIST OF TABLES

PAGE
Experimental Measurement Results 28
KI {Nondimensional) Comparison of Actual Data to
Interpolated Data 30
o (Nondimensional) Comparison of Actual Data to
Interpolated Data 31
K (Nondimensional) for Uniform Tension 38
KI (Nondimensiona?) for Three-Point Bending, S/W=4 42
K; (Nondimensional) for Three-Point Bending, S/W=8 43
Fringe Order Versus Load 56

viii




= A

AFWAL-TR-80-4001

LIST OF SYMBOLS

A Area
a Crack length
B Coefficient defined by Equation
b Material thickness
c Compliance
C Half the height of the beam W/2
d Distance between indentation
E Young elastic modulus
f Body forces
G Shear modulus
g Griffith energy release rate
E plane stress
H —§~7 plane strain
1-v
h Weight function

i,j.n Indices

K Stress intensity factor

K Curvature

KI Mode [ stress intensity factor

KI Nondimensional mode I stress intensity factor
KII Mode II stress intensity factor

KIII Mode III stress intensity factor

KIC Mode I fracture toughness

k Stress intensity factor per unit load
L Half span between supports

M Moment

m Fringe order

m Orange conic section coefficient

ix

7Ty T e, AR

DRI el iAok

TR g P i TN

e

7 S, TR

epe e AR




AFWAL-TR-80-4001

Q< O >

ij
ys

o

Crack surface tractions

Load

Coefficient defined by Equation (2-24)
Radius of curvature

Radius from crack tip

Plastic zone radius

Span between supports

Path

Surface tractions

Coordinate along crack, starting at the crack tip
Total strain energy stored in the cracked body
Displacement at location i for load Pm
Displacement in x direction
Displacement in y direction

Beam or strip height

Cartesian coordinate

Nondimensional stress intensity factor
Diffraction angle

Pach

Change in distance between indentations
Change in fringe order

Strain

Crack surface vertical displacement
Crack mouth vertical displacement
Wave length

Angular coordinate

Poisson ratio

Stress components

Yield stress




'll'.I.lIlllll!l-!lI!llIIll-lI'lllll!!!ll!l-n--aul-nnnkcqws wmE—— o : . I

! AFWAL-TR-80-4001

SECTION I
INTRODUCTION

1. BACKGROUND

Fracture mechanics presently provides the best available tools to
quantitatively assess the influence of preexistent cracks in structures.
Although fracture mechanics, as we now know it, is a relatively new tech-
1 nology (since the mid 1950s), the basic ideas were already presented by
Griffith (Reference 1) in the early 1920s.

Current linear elastic fracture mechanics (LEFM) concepts assume
that the stress intensity factor K, the parameter that relates load,
crack length, and geometry, controls fracture (K = KC = constant at
fracture) and crack propagation (Reference 23).

Stress intensity factor calibrations are required for any fracture
or crack propagation analysis. Since crack tip analysis can be complex,
experimental K solutions often become necessary to verify or supplement
analytical or numerical solutions.

For complex type geometries and loading configurations which commonly
exist in aircraft structures, experimentation may be the primary method
to obtain a reasonably accurate and dependable solution. Conducting
experiments on actual parts and loadings is often a very difficult and
costly procedure.

The main motivation for this investigation was to find a technique
that may, in some cases, greatly reduce the experimental effort required
in order to obtain a K solution.

An analytical approach to determine the stress intensity factors K
was discussed by Bueckner (Reference 2) and Rice (Reference 3). They
showed that once the displacement field and stress intensity factors are
known for one geometry and loading configuration referred to subsequently
as Case 1, K may be obtained for any other loading (Case 2) applied to
the same crack geometry (References 4 through 8, 21). The method depends

mainly on the reciprocal theorem and strain energy expressions. A load
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and material independent weight function can be constructed to relate the
stress intensity factor, material properties, and crack length together
with crack surface opening (for more details see Part II and Appendix A).

The significant advantage of this procedure lies in the fact that
only the first problem (Case 1) needs to be solved directly. Construction
of the weight function for this case allows ready determination of K for
any other loading on the same crack geometry (Cases 2, 3, etc.). Stress ;
intensity factors may then be obtained for a variety of other specimen

loadings, some of which may be highly complex compared to the original. 1
In addition, the computational expenses are minimal because only a single R
relatively simple load configuration needs to be calculated. {

SEE TN R

The only additional information required for any other case is the
stress distribution at the crack location for a noncracked body under the
load configuration in gquestion. This stress distribution is available,
in many cases, from the static crack free stress analysis or can be
obtained with much less effort than a cracked body analysis requires.

2.  PURPOSE

Although weight functions have been employed with analytical, finite
elements and other numerical methods, the author is unaware of attempts to
combine weight functions with experimental procedures.

The objective of this work was to show that the weight function idea
can assist the experimentalist by allowing him an opportunity to obtain
the stress intensity factor solution for a complex loading configuration
from the results of a simple experiment, and also to obtain K solutions

] for a variety of loadings from a single set of experiments. This will

greatly reduce the complexity and scope of the experimental effort.

e

TR O

3. GENERAL APPROACH

The weight function procedure is demonstrated with experimental
results for an edge crack specimen.
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The reference (Case 1) problem has been chosen as an edge cracked
strip subjected to four-point bending. Crack surface displacement measure-
ments near the crack tip were obtained by a laser interferometric method
following the technique developed at the Materials Laboratory (References
9, 10, 19). These results gave the mode I stress intensity factor KI for
that case. Crack mouth opening measurements, using a clip gage, were
then used to construct the crack surface displacement function incor-
porating Orange (Reference 11) conic section approximation. These
experimental results were used to evaluate the weight function and predict
the stress intensity factor Kl for other cases, which were chosen to be
uniform tension and three-point bending. The results were compared with
the known solution given in References 12 through 14,
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SECTION II

THEQGRY ;
1.  GENERAL ASSUMPTIONS

a. Linear elastic fracture mechanics (LEFM) applies i.e., the amount
of plasticity near the crack tip is relatively small

< 0.1

@ }_c"i

where rp is the radius of plastic zone. (See Hertzberg, Reference 15, and
Appendix B for a more detailed discussion.) é

b. The problem is assumed to be purely two-dimensional; i.e., no
variations through the thickness are considered.

c¢. Body forces are assumed to be negligible.
d. Only pure Mode I crack openings will be discussed.
2.  STRESS INTENSITY FACTOR

The stress intensity factor K is the LEFM parameter that relates load,
crack length and geometry. The LEFM approach to predicting crack growth
assumes that K controls:

a. Fracture (K = KC = constant at fracture)
b. Crack propagation due to fatigue
c. Crack propagation due to stress corrosion

Three modes of stress intensity factors are defined depending on the crack
tip opening mode (Figure 1). They may be stated as:

Mode I Opening K; = lim /27r o (0=0) (1)
Y
0
Mode II Sliding Kip = lim v2nr oxy (6=0) (2) J
r+0 :
?
Mode III Tearing Ky, = ;ig /2nr Ove (0=0) (3)

where crack tip coordinates are defined in Figure 2.
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Figure 1. Crack Opening Modes
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Figure 2. Crack Tip Stress Coordinates
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This work deals only with the opening Mode [, though it can be easily
extended to other "modes."
3. THE WEIGHT FUNCTION

The Mode I stress intensity factor KI under arbitrary loading, shown
in Figure 3, can be given as:

Ky =/'r.h-dr +ff-h-dA (4)
T A

(see Appendix A and References 2 through 6 for detailed discussion).
where:

[ is any path chosen around the body that includes all the
surface tractions and body forces,

A 1is the region defined by T,
T designates surface tractions,

I is the Mode 1 stress intensity solution corresponding to the
loads T and f,

f are body forces,

nix,y,a

Na (the weight function) (5)

h = h{x,y,a) = 7%;

n({x,y,a) is the crack vertical displacement for any chosen load
configuration (independent of T and f),

K, in the weight function, Equation 5, is the Mode I stress
intensity solution that corresponds to the n solution, and

£ for plane stress
E

T-v

for plane strain.

The weight function h is independent of the loads T, f, and material
properties and can be calculated for the same geometry from another known
solution of KI and an/aa.
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Figure 3. Cracked Body Loading Configuration

Using the principle of superposition of linear elasticity, the
calculations of the stress intensity factor considering the case of a
cracked body under a certain loading configuration is equal to the case
of the cracked body where only the crack surface is subjected to tractions
p(x) (coordinates are chosen so that the crack is in x direction). Here
p(x) is the stress 9y that will occur at the crack location for an
uncracked body subjected to the original loading configuration. This idea
is demonstrated in Figure 4.

I[f one chooses the path I' as any path that includes the crack surface
and, for simplicity, takes a straight crack in the x-direction as in
Figure 4 (the last assumption is not essential and is used only to simplify
the equations), then Equation 4 for KI can be stated as:

o
a
Ky sf hix,a)p(x)dx -[ hix,a)p(x)d (6)

o a

Reversing the integration limits and adding the two integrals we get:

4 (7)
KI = 2/ h(x,a)p(x)dx
(o}
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I
+
é

-p(x) p(x)

A = B + C
Figure 4. Superposition

Ky

RO

Part B can be viewed as a noncracked body; therefore,

o7 T e e
The unknown stress intensity solution for the leading p(x) is con-

sidered Case 2, and the known solution, from which the weight function
will be computed, is taken as Case 1. Then Equation 7 can be written as

a
Ky @ = 2[ h®(x,a)p@(x)dx (8)

o)

-

and from Equation 5

h(zfx,a) - 2;; (Bn(géa)) (9)
@ oy,
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1f Equation 9 is substituted into Equation 8, the result is:

a
H an(x,a)
K = p(x) (-————J———) ax (10)
o Bg, "),

where

1 is the Mode I stress intensity factor to be
(2) found,

p(x)(:) is the stress oy at the crack location for a
noncracked body with loading configuration of

Case 2,
K is the Mode I stress intensity factor for
I(Z) Case 1 and will be determined experimentally,
and

a is the derivative with respect to crack length
(:) of the crack opening profile for Case 1. n is
also determined experimentally.

4. K CALIBRATION BY CRACK TIP DISPLACEMENT

The crack tip displacement field is defined by the following relations
that represent the elasticity solution for the stress-displacement field
in terms of K near the crack tip of a cracked body. One can take these
displacement expressions for Mode I opening (References 17, 18, 10) as:

K
S ¢ 9 |1-v ;o2 © N
b = EVE cos 3[4+ ain 8] an
K !—— 912 . 2 9 (12)
u 7% sin ) [1+v cos? 2]
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for plane stress; and

K -
— N B 9 1:- 02 @ (13)
ux g T cos > b1 2V + sin 2]
u, = K—IJ L sin 2 -2-2\) - cos® 2 (14)
y G VY 2n 2 | s 2

for plane strain.

Consider the vertical displacement uy along the crack surface for
which

where t is a coordinate along the crack, starting at the crack tip. One
should note to conform with usual practice, n replaces the displacement
in y direction uy. Recall from elasticity that:

- __EBE__
G = 3T+ (15)

Substituting into Equations 12 and 14 the crack displacement for plane
stress and plane strain can be written as

4K %
i Y F (e
’s
_nH (2
Ky "'HI“ (7?) (17)

The equation holds only very near the crack tip

t << a

and allows one to calibrate KI by measuring crack opening at a known
distance very near the crack tip.
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5.  CRACK OPENING CALIBRATION

In order to find the slope with respect to the crack length 3n/3a
of the crack opening profile, an approximation has been used. Orange
(Reference 11) suggested a conic section approximation for a finite
width edge cracked plate. This approximation is based on assuming a
general conic section function for the crack opening shape and fitting
the crack tip radius of curvature and crack mouth opening to determine
the unknown coefficients. Further development of this relationship is
presented in Appendix E. Following Orange and substituting for the
crack tip curvature in terms of the stress intensity factor, using
crack tip displacement equations, the following expression is derived:

¥ =L(s) j_(s)* 18
(“o) 2+m a/* 2+m \2 (8)

where i is the crack mouth displacement and m is the conic section

coefficient.
Hn_ |?
m o= o -
mh=m [ZGaY] 2

(19)
Y is a nondimensional stress intensity factor
K
Y = 1 (20)
ova

Crack displacements of finite single edged cracked strips under
bending or tension generated by Orange (Equation 18) were compared to the
collocation method presented by Gross (Reference 20) and found to match
within 3.2 percent. The Orange equation was compared to the Rice
(Reference 3) solution for a center crack considering an infinite plate.
The results were found to be exactly the same. The Orange equation was
also used successfully by Grandt (References 6, 21) for cracks in fastener
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holes and for radially cracked rings. Substituting the expression for

Y Equation 20, and m Equation 19 into Equation 18, we obtain

2

() iy @ L)

let 8K.2
B = —1%
TH?
2 2
and R=n_°—_8KI
a’? TH?a
Thus, "
n = [Bt + Rt?)
Also, ain 1 2 - ) 2
3a " 2 [Bt + RT*] Yy [Bt + Rt?]

12

(21)

(22)

(23)

(24)

(25)

(26)

Y e o ST TR -

A e M, N RPN, 1 - TASOR. TC S #

3
1
3
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Figure 5. Edge Crack

i
From Figure 5, if t = a-x, then g} =
s, “% s IR
n_41i 2 ob 9R .2
9B 16KI 3KI
where: 32 - 33 (28)
a mH?2 a
and 8K.2 2n_ an. 2n % 16K, 9K
r R_"1 "0 o_ ‘o _ 1 1
E da 2.2 L2 oa ) +Hla °2 (29)

Equation 27 therefore defines an/3a in terms of the crack mouth displace-
ment o and the stress intensity factor KI and their derivative with
respect to the crack length.

O i

6. KI FOR CASE 2

Substituting Equation 27 into Equation 10 and also changing the
integration variable from x to t one obtains

a -
K. =H /p(t@ [Bt+Rt 7 [B+(%§-+2R)t+%t2]dt (30)
o

13
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where B, R, %g and %g are defined previously and calculated for Case 1.

From Equation 30 it is clear that measuring the stress intensity
factor KI and the crack mouth opening o for various crack lengths and
calculating their derivatives with respect to "a" allows one to
construct the weight function for the Case 1 loading configuration. By
knowing the stress distribution at the crack location for a noncracked
body under the loading configuration of Case 2 p(t)ca , one may obtain
KI for Case 2.

Computing this integral is quite tedious though possible for very
simple forms of p(t). However, numerical integration is possible for
any p(t) even if represented by a discrete numerical solution. In per-
forming numerical integration, one should be cautioned to the fact that
the weight function and therefore the whole expression under the integral
is square root singular at the crack tip t=0 but still it can be shown
that for the problems studied here a 1imit exists for the integral and,
in most cases, the numerical integration converges quite rapidly.
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SECTION III
EXPERIMENTAL TECHNIQUE

1. THE LASER INTERFEROMETRY METHOD

Stress intensity factor K calibrations obtained by measuring crack
tip displacements require a technique capable of accurately measuring
extremely small displacements very near the crack tip. As a rule of
thumb, the relations for the crack tip displacement field as expressed
in Equations 11 to 14 are regarded to be sufficiently accurate within a
distance of a/20 or smaller from the crack tip, where a is the crack
length. The laser interferometry technique described here was reported
in References 9, 10, and 19 to measure displacements of 0.1 microns at a
distance of 50 microns from the crack tip.

Results were reported leading to KI values that varied up to 15
percent from the theoretical value (for individual points). Most of
these deviations were attributed to the imperfect crack and material
characteristics and not to measurement errors. The technique is basically
similar to conventional interferometry but only measures in-plane
displacements on the surface.

Two small indentations are placed with a diamend indentor on both
sides of the crack near the crack tip. Those indentations are typically
square based pyramids with a base length of 20 to 40 microns and located
50 microns apart on both sides of the crack (Figure 6). A laser coherent
source impinges upon the indentations. The beam is diffracted back at an
angle R with respect to the incident beam as shown schematically in
Figure 7.

Since the indentations are placed close together, the respective
diffraction beam overlaps resulting in interference fringe patterns on
either side of the incident laser beam. A photograph of a typcial inter-
ference pattern is shown in Figure 8.

15
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Figure 6. Surface Indentation (x280 Magnification)

Left fringe pattern

Figure 7. Schematic Showing Fringe Pattern Generation

16
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Figure 8. Typical Interference Fringe Pattern

The relation between the indentation spacing and the fringe order
is set by the following equation (Reference 9):
d sin ay = mi (31)

where d is the distance between indentations, A is the wave length of
the source, and m is the fringe order.

As a Toad is applied to the specimen, the crack opens and the dis-
tance between the indentation changes. The relation between the change
in d and the change in the fringe order &m from a fixed point of view is

5d = ém A/sin a (32)

Now observing the fringe pattern from a fixed point allows one to count
the number of fringes passing and hence determine the change in the
fringe order. Equation 32 will then give the change in the distance d
between the indentations that correspond to the crack opening. Averaging
the left and right fringe number will eliminate free body motion.

17
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2.  TEST APPARATUS

The test specimens used were flat strips of Aluminum 7075 T651.
A small V notch was placed on the edge of the specimen to allow pre-
cracking and a shallow groove was cut at the edge as to fit the clip
gage used to measure crack mouth openings. (Fiqure 9).

i

Figure 9. Test Specimen

The specimen was placed in a four-point bending fixture. Load was applied
by a standard Instron machine equipped with a compression load cell
(Figure 10).

Bending fixture

Specimen

Clip gage

Load cell

Figure 10. Specimen Set Up in Bending Fixture
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The crack mouth opening was measured by a clip gage placed in the
premachined groove. The c11p gage consists of two small steel plates on
which strain gages were bonded (Figure 11). Precalibrating the clip gage
allows one to relate the mouth opening with the changes in strain measured.

Two pyramid-type indentations have been placed near the crack tip
by a standard Lietz microhardener tester with a diamond indentor of a
square based pyramid shape with face angles of 136 degrees. The indentations
were impinged by a Spectra Physics Model 120 5 MW HeNe laser. The laser
beam wave length X was 0.6328 microns and had a divergence angle of 0.71
mr and a beam diameter of 0.57 mm. The laser was located so that the {
beam impinged perpendicular to the specimen surface. The angle of the
diffracted beam a, can be calculated directly by knowing the face angle
of the indentation. (Figure 11).

§ Steel plates
,AF

| —

Strain gage\ — Strain gage

NN

\\\\_______ Spacing block

Figure 11. Clip Gage Setup
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The fringes created by the interference of the reflected beams were
picked up by two photoresistors that were located in a fixed place on the
fringe pattern.

The active face of the photo resistors was masked leaving a narrow
slit (smaller than the fringe spacing) to allow effective distinction
between individual fringes. A photoaraph of the test apparatus is seen
in Figure 13.

As load was applied and the fringes started moving, the photoresistor
created an electrical signal that after proper amplification could be
recorded with the aid of a strip chart recorder.

3. TEST PROCEDURE

Two Aluminum 7075 T651 specimens were each used to test 5-10 different
crack lengths. The first specimen was used for longer cracks and the
second for shorter cracks with some overlapping between the regions that
allowed comparing between the two. The specimens were precracked in
the long transverse {LT) direction of the material in three-pnint bending
on a Schenck fatique machine using cyclic loads at a frequency of 20 Hz.
The precracking stress intensity factor varied from 6000-9000 psi /in.

The higher KI was used to initiate and propagate the crack to about 80
percent of the desired length, and the lower KI levels were applied to
get the final sharp crack.

Two indentations were placed on the surface 50-200 microns behind
the c¢rack tip as explained previously. A load of 200 grams on the
indentor diamond head was found most suitable to create good reflecting
indentations with a base square dimension of approximately 30 microns.
The specimen was mounted on the loading fixture, and the two photo-
resistor output signals together with the clip gage and load cell signals
were monitored by a four-channel strip chart recorder to create a common
time basis.

The specimens were loaded typically to values of KI = 12-14 ksi /in
so the amount of plasticity in the specimen was kept small (Appendix 8).
Two load cycles were applied prior to actual testing so that the crack would
appear to its full length on the surface and would easily be seen under a
microscope.

20
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UV

&“‘V““~"'/V~ Fringes d

Figure 12. Laser Beam Reflection F

Photo-

resistors
Specimen,__ —~Laser |
Clip gage i
Load ‘
Fixture ‘
i
Cell ;

Figure 13. Test Apparatus Setup
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During the preload cycle the photoresistors were relocated to a
position such that the maximum fringe intensity could be observed. Since
the photoresistors were fixed in position while the specimen with the
indentation was displacing due to the applied load, it became necessary
to establish the final location of the resistors under a mean load so
that the indentations could still stay within the beam boundaries over the
extreme deflection.

Three load cycles were applied to each specimen for each crack
length. After each test the crack length was measured in order to account
for any crack propagation during the test cycle. Then the crack was
propagated to the next stage in the Schenck fatigue machine. In addition,
for two different crack lengths the crack surface displacement was
measured along the crack at 2-6 different locations using previously
applied indentations in order to verify the Orange (Reference 11) conic
section approximation for the crack opening.

22
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SECTION 1V
DATA REDUCTION AND NUMERICAL TECHNIQUE
1. Ky FOR CASE 1

The fringe patterns, crack mouth opening, and l1oads were all recorded
on a four-channel strip chart recorder. A typical chart for a single
loading cycle is shown in Appendix C, Figure C-1.

As explained previously, two sets of fringes were created by the
reflected beam from the indentation. For each set of fringes, a slope
of number of fringes per unit load dm/p can be obtained. These slopes were
averaged to eliminate free body motion. A more detailed description of
the laser interferometer data reduction procedure can be found in
Appendix C.

Using Equation 32
P-2P P"27P sin o (33)

where )\/sin a is the calibration factor of the interferometer used here.
Equation 33 allows one to compute the displacement per unit load. The
loading and unloading results of three loading cycles were averaged to
give an average displacement per unit load. The distance t of the
indentation behind the crack tip was computed by averaging the initial
distance before the test with the one measured after three test cycles.
Since only three cycles were applied and the amount of crack propagation
was very small (a few microns), linear interpolation was adequate to give
a sufficiently accurate estimate.

KI for Case 1 can now be determined from the crack displacement near
the crack tip (Equatfons 12 or 14). In most cases G is close enough to
180° so the simplified form of Equation 17 can be used.

Since the measurements are on the surface, the stress field should
be considered as plane stress and H should be given the value of E
(1x107 for aluminum 7075T7651). Now Equation 17 takes the form
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K

e 3 (a) E (&1)" (38)
P P/j4 \ t

This data will usually be converted to some nondimensional form.

———
o

2. CRACK MOUTH OPENING

The crack mouth opening n, was recorded directly from the clip gage
readings. The crack mouth opening per unit load was then readily obtained
from a n, versus P plot using only the linear part of the curve and
neglecting the initial nonlinear part which is associated with crack
closure effects.

e T T v R U YT

w3

' 3. NUMERICAL TECHNIQUE FOR Ky CASE 2 COMPUTATION

The rest of the computation, which involved calculating stress
intensity factors for different Case 2 loadings were programmed and
handled numerically. The KI data was fitted by a suitable interpolation

aKI(j)
curve. Interpolated values of KI and —55 = were computed for any

desired crack length a/w. In a similar way, the crack mouth opening !
data for Case 1 o was fitted by an interpolating curve that allows

an
one to compute values of o and —52- for the desired points. These inter-

polations are calculated in a different subroutine so any desired inter-
polation function can be tried without changing the main program. A
comparison table for KI and o for interpolated data versus actual data

is printed out so one can judge the accuracy of the interpolation process ;
chosen. Fourth order least square polynomials will give reasonable %
results in many cases. i

Using Orange (Reference 11) conic equation discussed in Appendix E §

for the crack opening profile, the derivative of the crack opening along
the crack with respect to the crack length can be computed through
Equation 27.

Since different factors are used to nondimensionalize the KI and "o

K
data, care should be taken to bring all the KI’ 3%'. n. and
an °

~3§- to a common basis. Using Equation 9, the weight function is

e oo s T e £~ 1§

! 20




AFWAL-TR-80-4001

computed for each crack length at any point along the crack. The constant
H is determined depending on plane stress or plane strain conditions
(Appendix B). The stress distribution along the crack location for a
noncracked body p(t) is supplied by a separate subroutine and can be
easily fitted with available data or some known analytical solution. K
for Case 2 now is computed through integrating Equation 30.

I

The integral is performed numerically using a Romberg integration
scheme (Reference 24). Although the weight function and thus the
integrand in Equation 30 is singular at the crack tip, the integral will
still converge to a distinct value quite rapidiy for most p(t) functions.
Because of the crack tip singularity, the lower limit of this integral
cannot be set to zero. A value close to zero should be taken and this
value can be made smaller and smaller by an iterative process until the

value of the integral converges within a specified accuracy.

Since the numerical integration process may be executed many times
until convergence is obtained, an efficient algorithm should be used to
reduce the required computer time. Romberg integration scheme used here
is a powerful and efficient numerical integration technique. It is
based upon the trapezoidal rule combined with Richardson extrapolation.
More details of this scheme can be found in Hornbeck (Reference 24).

Using this scheme reduced the computer time by a factor of about 200
compared to the Simpson's rule integration scheme. A detailed description
of the computer program is presented in Appendix D.

s i ——— .
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SECTION V
EXPERIMENTAL RESULTS
1. EXPERIMENTAL MEASUREMENTS

Two Aluminum 7075 T651 edge cracked strips were used in the experi-
ments. The specimens were cut out from a rolled plate and the crack was
grown in the long transverse (LT) direction of the material.

The dimensions of the specimens and the region of crack length in
which they were tested are shown in Figure 14.

!

W | R} b
2 Q F 4
22 b W N* Q F a
Specimen A| gv | g, 24" 10 .27" 1 0,04" | 0.05" | 0.2328" -0.7517"
Specimen B | o» [0, 245 0.7885" | .31" | 0.036" | 0.036" | 0.08153"-0.3753"

*N dimension determined for ¢11p gage purposes

Figure 14. Specimen Dimensions
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Specimen A was tested with ten different crack lengths with crack
length to width ratios ranging from .2328-.7517. Specimen B was tested
with five different crack lengths where a/w ranged from .1034-.476.
Both specimens were loaded in a four-point bending fixture as shown
in Figure 15.

‘ P

& ——,

T

b T

Figure 15. Loading Fixture Dimension

Each specimen was loaded through three loading cycles, and near crack tip
displacement (by laser interferometry) and crack mouth openings were
recorded. Table 1 represents the average results for all crack lengths
measured.

2.  DATA INTERPOLATION

The stress intensity data calculated from the interferometry
measurements was converted to a nondimensional form of

2
Ky KybW (35) :
ovma 6M/a '
P.1"

where M is the bending moment M = —5—

The crack mouth opening data was converted to a nondimensional form

2
n nobw H

Zoa "~ M T Timma (36)

e~
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TABLE 1

EXPERIMENTAL MEASUREMENT RESULTS

Distance of
indentation Crack mouth
Nondimensional| from crack No of fringes | displacement
Specimen | crack length tip per unit load | per unit load
a/w r Sm/p no/p
Microns 1/8bx 1073 | in/tbx107°
B .1034 101 5.093 0.568
B .1586 83.5 6.623 0.7453
B .2064 88 7.6713 0.9836
A .2328 121.5 7.3128 0.856
B .2646 86.5 9.116 1.268
A .2666 99.5 7.580 1.14
A .3094 143 10.180 1.405
A . 346 56 7.340 1.705
A .3978 72 9.140 2.358
A .436 46.5 8.0146 2.727
B .476 47 12.808 4.121
A .4893 50 10.130 3.6585
A .5780 111.5 18.354 6.04
A .6467 74 20.460 9.216
A L7517 70 35.500 20.681
28
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The nondimensional data for KI and n, was interpolated by a least square
fourth order polynomial. Table 2 and Table 3 present the actual experi-
mental and the interpolated data for KI (nondimensional) and N,
(nondimensional) respectively including the relative difference in percent
of the interpolating polynomial at the test point.

Figure 16 presents the actual experimental nondimensional KI com-
pared to the known reference results from Tada {Reference 12). Figure 17
presents the actual experimental nondimensional data for o compared to
the known reference results from (Reference 12). The average difference
between the reference values of KI and the experimental data is 6% while
the maximum difference for a single measurement is up to 14%. These
results are similar in accuracy to the ones obtained by Macha (Reference
10) for the laser interferometry technique. The values of KI from the
interpolating polynomial that were actually used to compute the weight
function are similar in accuracy with a maximum difference of 13% and an
average difference of 6% compared to Reference 12. One should note
that the relatively large difference in the slope of —5%- for some of
the short crack lengths (Figure 16) will have only a minor influence on
the weight function computation as can be seen from examining Equation 30.
o data as well as the interpolating polynomial fits the Reference 12
values much better as seen in Figure 17.

3.  CRACK PROFILE MEASUREMENTS

For two different crack lengths on specimen A the crack opening was
measured along the crack at several points in addition to the point near
the crack tip and at the crack mouth. These measurements were done by the
laser interferometry technique. The existing indentations left behind
as the crack propagated were used for these measurements. The crack
openings along the crack were compared to the Orange (Reference 11) conic
sections and found to match this approximation excellently (Figures 18
and 19).
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TABLE 2

INTERPOLATeD DATA

K (NONDIMENSIONAL) COMPARISON OF ACTUAL DATA TO

Crack Length Actual KI Interpolated KI Rglative
Difference
. K bW? K bW’ . in %
oM/Ta oMvTa

.1034 .9073 .9467 4.34
.1586 1.0575 .9776 -7.56
.2064 1.0572 1.0545 -.26
.2328 1.1137 1.1060 -.69
.2646 1.1007 1.1705 6.35
.2666 1.1862 1.1746 -.98
.3096 1.2366 1.2590 1.81
.3460 1.3490 1.3244 -1.82
.3978 1.3804 1.4086 2.04
.4360 1.4388 1.4696 2.14
.4760 1.5646 1.5424 -1.42
.4893 1.6551 1.5710 -5.08
.5780 1.8481 1.8774 1.59
.6467 2.3460 2.3688 .97
.7517 3.9513 3.9413 -.25

*The interpolating polynomial is:

2
KIbW

ocM/na

30

= 70.75(a/W) ¥ -92.45 (a/W) 3+42.95 (a/W) 2-6.53 (a/W) +1.257
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F TABLE 3 .

N, (NONDIMENSIONAL) COMPARISON OF ACTUAL DATA TO

INTERPOLATED DATA ,

i

"

:

Crack Length Actual Ny Interpolated n Relative %

Difference )

) , in % X

. nobw H nobw H .

12Ma 12Ma F

.1034 1.9440 1.9500 .31 *
.1586 1.6643 1.6491 -.91

.2064 1.6855 1.6334 -3.09 ;

]
.2328 1.6163 1.6879 4,43
.2646 1.6950 1.7933 5.80
.2666 1.8796 1.8011 -4.18
.3096 1.9961 1.9923 -.19
.3460 2.1660 2.1823 .75
.3978 2.6055 2.4945 -4.26
.4360 2,7493 2.7696 .74
.4760 3.0632 3.1251 2.02
.4893 3.2866 3.2648 -.66
.5780 4.5933 4.6431 1.08
.6467 6.6244 6.5725 ~-.78
.7517 12.0980 12.1082 .08

*The interpolating polynomial is:
nobWH

oM = 210.38(a/W) “-282.57(a/W) *+150.74 (a/W) 2-32.16(a/W) +

+3.952
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==== Interpolation curve [} E
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1
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Figure 16. Stress Intensity Factor (Nondimensional) for Pure Bending
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r‘Bnobu2H
5 12Ma
16 = Tada (Reference 12)
r

. === Interpolation curve
14 for the experimental

data
O Experimental data,
12 Specimen A
| & Experimental data,
Specimen B )
110
-
- 8
= 6
"
— 4
— 2
i a/u
OL PO B | T | ] | I | 'O TR
A 2 .3 .4 .5 N 7

Figure 17. Crack Mouth Opening (Nondimensional) for Pure Bending
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4. CASE 2 LOADINGS

Three different loading configurations were chosen for Case 2,
uniform tension, three-point bending with S/W of 4 and 8 (Figure 20).
Each of the different Case 2 loading configurations requires another

function p(t) as the noncracked body stress at the crack location stresses.

g (o)
0 UNIFORM TENSION 0

,;__‘ —iipn

l f—

THREE-POINT BENDING

:

P/2 [ P/2

Figure 20. Case 2 Loading Configurations

5.  UNIFORM TENSION

In this case,

p(t) = const. = % (37)

where % is the remote stress. Since the standard nondimensional
representation for KI for uniform tension is

7?300 (38)

the function p(t) should be factored by 1/Jvao° to get K; in the
desired form. Therefore, take

Y

(in the computer program 1//ma is already factored in the weight function
so p(t) is substituted as 1.).
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The results of the nondimensional stress intensity factor for
uniform tension at equally spaced points from a/W=.1 to a/w=.7 are
presented in Table 4. These results are compared to Tada's (Reference 12)
solution. The results agree with the reference solution within 8 percent.

Figure 21 compares the reference solution (Reference 12) to the values
calculated at the same a/W points where experiments were performed on
the four-point bending specimen. One can see that the last point is the
only calculated value that does not agree favorably with the reference
data. Since the computations required differentation of experimental
data, one should be very suspicious about the results obtained at the
experimental interval end points. Close to the end points computing
derivatives actually requires extrapolations that can be very inaccurate,
since the behavior of the function is unknown in these regions.

Irivestigating Equation 30 shows clearly that the derivatives 3K/3a
and ano/aa have a relatively larger influence on the value of the weight
function at longer crack lengths; therefore, the computed values are
more likely to get distorted at the upper limit of the experimental a/W
interval as can indeed be seen in Figure 21.

6. THREE-POINT BENDING

A solution for the stress distribution of a noncracked strip under
three-point bending in a cross-section through the center is given by
Timoshenko (Reference 27):

3p (z c) P P ( v? >
o, = — |5 -=)y + + - ==
X 2¢3b 2 m 2ncbh nch 2¢3 0

37
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TABLE 4

K (NONDIMENSIONAL) FOR UNIFORM TENSION

< Calculated i From

Crack Length ov/ma o/ma Relative

Using the Difference
a/W Weight Function Ref 12 in %
.1000 1.2705 1.1957 6.26
.1500 1.2697 1.2682 .12
.2000 1.4041 1.3667 2.74
.2500 1.5540 1.4941 4.01
. 3000 1.6855 1.6551 1.83
.3500 1.8170 1.8565 -2.13
.4000 1.9967 2.1080 -5.28
.4500 2.2917 2.4241 -5.46
.5000 2.7719 2.8266 -1.93
.5500 3.4752 3.3486 3.78
.6000 4.3636 4.0432 7.92
.6500 5.3158 4.9993 6.33
.7000 5.1832 6.3755 -3.02

38
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o
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l_ 9
_ 8
——— TADA (REFERENCE 12)
e 7
A EXPERIMENTAL RESULTS USING A
L— 6 THE WEIGHT FUNCTION
L 5
- 4
r 3
| 2
- 1
a/w
1 J [ } L | l Il l I;J_‘ }
L .3 .4 5 .6

Figure 21. Stress Intensity Factor (Nondimensional) for Uniform Tension
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The terms of this equation are defined in the following Figure 22.
9 is the stress in x-direction along AD.

X

X 2c=W

~
-
1 ]

i _I
P/2 p/2
_1

Figure 22. A Uniform Strip Under Three-Point Bending

According to Timoshenko, this expression gives the stress with very good
accuracy except for point D where an errgr of .121 E%- exists based on a
more accurate solution. This term will lead in our worst case to an
error of 4 percent in the load distribution at the crack mouth Tocation,
but since, at this point the weight function has its Towest value, the
integral of the product of h and p(t) is expected to have much better

accuracy. The standard nondimensional solution is of the form
K
I
—_ (40a)
o /ma

where

6M and M = %;
4bc?

So the undimensional form of KI becomes

2

——m

Yma 3Pg

40
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.

The factor 1//ma 1is already included in our computer program in the

weijht function so the form of p(t) that is required in order to get KI ‘
in the form of Equation 41 is -

b o ————— e

o, (t) 4bc? ?
p(t) = —3p7— (42) b4

Substituting Equation 40 to Equation 42 yields

2 12 2 s
oty =2 (8) + [1 - 'ﬁ(%)]% * 37 <%><§> @

2%

u

—
——

where S

and W

2c

[PESE

Changing to crack tip coordinates t the expression for y/c becomes

ylc = m—}—z)—<t+%—a)=2 (v‘tv - -%) + 1 (44)

Substitute Equation 44 into Equation 43 and get

oo = 50 - 2616 - 9] - 260G - )

(45)

Results for the nondimensional stress intensity factor considering
three-point bending (S/W=4 and S/W=8) are presented in Tables 5 and 6 ‘
respectively. These results are compared with known results from
References 12 and 28. The reference solution claims to be accurate for ;
a/W <.6 and in this interval the calculated experimental values are A
within 6.15 percent accuracy for S/W=4 and 5.9 percent for S/W=8.

Figures 23 and 24 show the calculated KI for three-point bending for
the a/W points where actual data was gathered for the four-point bending. C
As for the uniform tension case, the last point is the only one not fitting |
the expected curve because of the inaccurate extrapolation procedure
explained previously.

LY
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TABLE 5
Ky (NONDIMENSIONAL) FOR THREE-POINT BENDING, S/W=4

Crack Length .Kéaizz::iZEnZ:::ZI) K, (Nondimensianal) g?%?éi:ice
a/w the Weight Function Ref 28 in %
.1000 1.0134 .9849 2.89
.1500 . 9447 .9731 -2.91
.2000 .9838 .9803 .36
. 2500 1.0272 1.0037 2.34
.3000 1.0491 1.0425 .64
.3500 1.0635 1.0979 -3.13
.4000 1.1015 1.1736 -6.15
.4500 1.1994 1.2754 -5.96
.5000 1.3866 1.4112 -1.74
.5500 1.6656 1.5910 4.69
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TABLE 6
Ky (NONDIMENSIONAL) FOR THREE-POINT BENDING, S/W=8

Crack Length X (Nondimensi?nal) K. (Nondimensional) Relative

Calculated Using Difference
am the Weight Function Ref 28 in %
.1000 1.0630 1.0156 4.66
.1500 .9911 1.0080 -1.68
.2000 1.0314 1.0183 1.28
.2500 1.0755 1.0438 3.04
.3000 1.0964 1.0839 1.15
.3500 1.1087 1.1403 -2.77
.4000 1.1450 1.2167 -5.89
.4500 1.2431 1.3189 -5.75
.5000 1.4328 1.4549 -1.52
.5500 1.7160 1.6349 4.96
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’ — 4.0
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A EXPERIMENTAL RESULTS
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Figure 23. Stress Intensity Factor (Nondimensional) for Three-Point
Bending S/W=4
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4.0
B K
ovma
| 3.5
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A
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Figure 24. Stress Intensity Factor (Nondimensional) for Three-Point
Bending, S/W=8
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SECTION VI
CONCLUSIONS

1. This work shows clearly that the experimental weight function
procedure leads to excellent results for the stress intensity factor
without actually testing the loading configuration in question.

2. A set of experiments of a single loading configuration can be
used to calculate the stress intensity factor solution for any other
loading configuration applied to the same geometry. The only additional
information required is the stress distribution at the crack Tocation
for a noncracked body.

3. One should 1imit the results obtained for a different loading
only to the same a/W region studied in the original experiment. Extra-
polations, or even calculations, near the test a/W limits may lead to
inaccurate results.

4. Because data scatter can lead to errors when differentiated, care
should be taken to collect enough data to yield reasonable interpolating
functions.

5. Even though some error was introduced in the KI and Ny measure-
ments, the numerical procedure using the derivatives of KI and o did not
distort the Case 2 results beyond the basic accuracy of the Case I measure-

ments.

6. The laser interferometric technique provides an efficient procedure
for crack opening measurements and leads to accurate results for this type
of measurement.

7. The Orange (Reference 11) conic section again provided an accurate
representation for the crack opening profile for edge cracked strips. This
conic section should, however, be compared with actual profile measurements
(as done here) prior to applying it to other geometries.

8. The fact that the actual cracks were not perfectly straight on a
micro-scale, as assumed in this theory, is the most likely source for KI
calibration errors for Case 1 loading (four-point bending). Perhaps other
materials would give "straighter” cracks which more closely match the
analytical behavior.
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APPENDIX A
THE WEIGHT FUNCTION

The idea of the weight function has been introduced by Bueckner
(Reference 2) and was also discussed in References 2 through 8.

The following analysis shows that {if the complete solution of the
stress intensity factor and the crack opening displacement for a crack
subjected to a certain loading system is known, then the stress intensity
factor solution for the geometry under another loading configuration may
be obtained directly from the known solution.

Let us consider a cracked body with loads P]""’Pn as described
in Figure A-1.

Figure A-1. Loaded Cracked Body
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The elastic energy release rate, often referred to as the Griffith energy
rate, can be defined following Irwin {Reference 22) as

_av
(9-.5; ‘P (A_])

where U is the total potential energy stored in the cracked body and a is
the crack length.

g has units of force and is often referred to as the crack
extension force

N N
C..P.P.
izl jzl 3

[
1]
N~

(A-2)

where Cij is the compliance coefficient defined as the deflection at point
i due to a unit force at point j.

N N 2aC.. N 3Ju
§-%l- L L =mirm ko
P i=1 j3=1 i=1
(A-3)
where
N N

u, = 2 ud = 2 C..P (A-4)

R o DR £ SRR A
u].J is the displacement at i due to load Pj'

Since the elastic energy release rate g (based on strain energy
consideration) and the stress intensity factor K (based on crack tip
stress considerations) are both parameters that characterize crack growth,
a relation can be established between them as shown by Hertzberg
(Reference 15).

é; - K° (A-5)
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where H is defined as

E for plane stress
H = (A-6)
for plane strain

1-v?

Since K is the linear elastic stress intensity factor, superpasition
can be used to write

N N
K = Z K, = ] k; (a)p;

1Y 4= (A-7)

ki stress intensity factor per unit load. Substituting, into the elastic

energy release rate

k2 _1 Y N M) k.(a)p.p
g H izl j£1 SR (A-8)

By equating Equation A-8 to Equation A-3 we conclude that they should be
equal term by term.

Thus,
ki(a)k.(a) _1 aci.(a)
H 2~ Jda (A-9)

If the full solution for K is known only for one load, say Pm’ then

Bcim(a)

. 1 (R-10)
sa km(a)

.
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K
recall, that we defined in Equation A-7 Kp = ﬁm
m
u.m
- ; .U
and in Equation A-4 Cim = P
Therefore,
H B“im 1
kita) =5 53~ © (A-11)
m
and since
N
K = 121 k, (a)P, (A-12)
Then " 2 Bu;“
K = 55— P.
2Km i=1 Jda i (A-13)

For an arbitrary distribution of Pi’ and a set of surface tractions T(s),
the expression for K can be written as

m
= _H v
K = 2Km J %a (S,m) T(S)ds (A‘]4)
S
If one defines the weight function as
_ _H ™ (s,a)
hy(s.a) = ZK_(a) da (A-15)

Then we can readily see that the weight function depends only on the
geometry of the cracked body (including the crack length) and the
loading configuration denoted by the superscript m.
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Substituting the term for the weight function into Equation A-14,
we get

K =/ hm(s,a)'r(s)ds (A-16)
Jg

We can therefore conclude that the stress intensity factor for the
arbitrary surface traction T(s) can be obtained from the known weight
function we computed considering the loading configuration m. In a
little bit more general derivation, the body forces can be included and

one can write
K = T.hdl + f-h-da
r A (A-17)

where h is the weight function obtained from any known load configuration,
T are the surface traction for which K is to be determined,
f are the body forces for which K is to be determined,

[ is a chosen path around our specimen as to include all the
surface tractions T, and

A is the region where the body forces act.
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APPENDIX B
JUSTIFICATION OF ASSUMPTIONS

| 1. USE OF LINEAR ELASTIC FRACTURE MECHANICS

Linear elastic fracture mechanics (LEFM) requires that the amount
of plasticity near the crack tip will be relatively small. As a "rule
of thumb" LEFM can be considered to be valid if

" < 0.la

where rp is the radius of the plastic zone around the crack tip and a is
the crack length. Using Irwin's circular model for the plastic zone
incorporating the upper bound dimension as obtained by a plane stress
solution (Figure B-1),

aeffective

Figure B-1. Irwin Circular Plastic Zone Model

/ 2
. =L(KI (8-1)
P 271 oy.s

where Oy's is the yield strength of the material.

Using 7075 7651

Jy's = 80.8 ksi
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The maximum KI used in our tests was lower than 15 ksi/in. Therefore,

the maximum radius of plastic zone that has been developed was
2

=L [15) = 0.0055 in
Tp =27 (80.8) )

The smallest crack length used was

a = 0.0815"

Thus,

r
(.E) = 0.0674 < 0.1

The conclusion is that LEFM was valid even in the most extreme conditions.
In most cases the crack length was significantly longer and therefore
rp/a smaller.

2. PLANE STRESS/STRAIN CONSIDERATIONS

As a rule of thumb (References 15, 16), if

2

K
b > 2.5(——19—) (8-2)
- o]
y-s

where b is the material thickness, KIC the fracture toughness, and o .
the yield strength.

The specimen can be considered thick enough to be under a plane
strain stress field.

Kic for 7075 T651 plate is 21.4 ksi/in.

K 2
IC
———— = 0-176"
2.5 (oy-s)

Since .24"- .25" thick specimens were used, they can be viewed to
be under plane strain conditions.
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APPENDIX C
LASER INTERFEROMETER DATA REDUCTION

A typical strip chart recorder trace of fringe motion crack mouth
opening and load is shown in Figure C-1. From this chart the fringe
order versus load data can be obtained for the left and right fringe
pattern as presented in Table C-1. The data can be plotted as shown
in Figure C-2.

From Figure C-2 slopes of &m/P of the left and right fringe pattern
can be obtained by considering only the linear part and ignoring the
initial nonlinear part of the plot that is associated with fatigue crack
closure effects. Those siopes are averaged to eliminate free body
motion.

The experiment is repeated and results are averaged. The value of
the slope is used in Equation 33 to get displacement per unit load data.
Through Equation 34 stress intensity factors can be calculated.
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Figure C-1.

and Crack Mouth Opening
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TABLE C-1
FRINGE ORDER VERSUS LOAD

Fringe No. Load Left Pattern Load Right Pattern 55
0 120 1b. 60 1b. :,
H 1 190 1b. 150 1b.
2 237 1b. 190 1b.
3 278 1b. 235 1b. (.
4 320 1b. 275 1b. i
5 365 1b. 320 1b.
6 410 1b. 360 1b.
7 450 1b. 400 1b.
8 490 1b. 445 1b.
9 485 1b. ;
i
*
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APPENDIX D
COMPUTER PROGRAM DESCRIPTION

The computer program has been written to perform the numerical
computation involved in the process of data interpolation, weight function
calculations and finally evaluation of the integral in Equation 30 to

determine KI for Case 2.

In order to allow maximum flexibility in the usage of the program,
it was constructed of a main program that performs the integration and
nine subprograms that perform all the other necessary calculations. In i)
addition, two library subprograms are used, one from the IMSL library
and the other from the CC 6600 library. This structure of the program
allows using it for different cases and configurations and permits the

user to enter his own interpolation schemes, comparison functions and
the noncracked body stress distribution p(t) that makes it possible to
compute any desired Case 2 stress intensity factor.

The program is written in FORTRAN and was executed on the CDC system
at Wright-Patterson Air Force Base. £Execution time for the three-point
bending and uniform tension Case 2 stress intensity factor varied from
two to four seconds.

1. THE MAIN PROGRAM

The main program reads in the input data, calls in the different
subroutines to perform necessary computation and performs the numeric
integration by using the IMSL library subprogram DCADRE. An iterative
scheme “pushes" down the Tower integration 1imit until the desired accuracy
for the end result is met. At the end, it prints out computed KI for
Case 2 compared to user-supplied comparisen data.

2. FUNCTION SUBPROGRAM F(x) f-

This function computes the value of the integrant (the weight
function multiplied by P(t)) at each distance t from the crack tip.
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3. FUNCTION SUBPROGRAM P(x)

This function computes the value of the stress at the crack location
P(t) for a noncracked body at any distance t from the corresponding crack
tip.

The function should be supplied by the user and is the only subprogram
that has to be altered when computing KI for different Case 2 configurations.
Care should be taken as related to the form in which P(t) s supplied.

This form will determine the form of the calculated KI' A factor of
1//ma is already included in the weight function calculation. So if

P(t) is supplied directly in terms of stress, the resulting KI values will
be in the dimensional form of KI/JFE.

4. LIBRARY FUNCTION PLSCF

A CC 6600 Library subroutine, this function computes least square
polynomial fits for a given set of data. Polynomials up to 6 degrees or
Chebyshev polynomials of any degree can be specified by the user. For 1
further information see Reference 25.

“.
5.  LIBRARY FUNCTION SUBPROGRAM DCADRE ‘i

An International Mathematics and Statistics IMSL Library subprogram,
this subprogram performs numeric integration of a function using the |
Romberg extrapolation scheme. The function DCADRE is capable of integrating :
functions with "jump" discontinuities and certain types of singularity.

This feature is most important in our case because of the crack tip singu- t
larity of the weight function. Even if the desired accuracy is not X
found, DCADRE returns the best available estimate. See the IMSL Manual f
(Reference 26) for further information. ﬁ

6.  SUBROUTINE KPOL

This subroutine computes a fourth order least square polynomial fit '
for the nondimensional KI data using PLSCF subroutine from the CC 6600 |
library. It prints out the polynomial coefficients C(5)...,C(1) and i
returns these values to the main program. It also prints out the error ]
flag IER from PLSCF.




AFWAL-TR-80-4001

7.  SUBROUTINE EPOL

This subroutine computes a fourth order least square polynomial fit
for the nondimensional "o data using PLSCF subroutine from the CC 6600
library. It prints out the polynomial coefficients D(5),...,D{(1) and
returns them to the main program. It also prints out the error flag
IER from PLSCF.

8.  SUBROUTINE EVEK

Evaluates the nondimensional KI from the fourth order least square
polynomial and the derivative of KI with respect to crack length aKI/aa
at the points where KI for Case 2 should be evaluated. One should realize
that the differentiation considers the fact that the nondimensional KI
usually factors out 1//a that should be included in the differentiated
term. The derivative aKI/aa requires the expression

9K — Y Iy
v — . gx
1. 3(0/“3‘"L=c/wa (Za * 8a)
sa Ja

where Y is the nondimensional KI value and o is the maximum tensile
stress in the specimen. KI and BKI/aa are returned to the main program
in a dimensional form factored only by 1/0 as to match the o data.

9.  SUBROUTINE EVETTA

Evaluates the nondimensional o from the least square fourth order
polynomial and the derivative of o with respect to crack length ano/aa,
at the points where KI for Case 2 should be evaluated. One should realize
that the differentiation considers the fact that the nondimensional y
is factored by a term of "a" that should be included in the differentiated
term as applied in the above paragraph.

o and ano/aa are returned in a dimensional form factored by 1/v
to match the KI data.
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10. SUBROUTINE COPK

Compares the nondimensional KI input data with the interpolated data
by KPOL at the test points. A comparison table that includes a relative
error in percents is printed out for the user's evaluation and judgement.

11.  SUBROUTINE COPETA

Compares the nondimensional o input data with interpolated data
by EPOL at the test points. A comparison table that includes a relative
error in percents is printed out for the user's evaluation and judgement.

12. SUBROUTINE KANA

Evaluates KI for the Case 2 loading configuration from a user-
supplied comparison function. The evaluation is done at the same points
where KI Case 2 is evaluated from the experimental data. This subroutine
can be eliminated if the above comparison data is available explicitly.
In this case, the comparison values should be assigned directly to AK
array. If no comparison values are available, the final printout table
should be altered to avoid undefined terms.

13. LIST OF SYMBOLS USED IN THE PROGRAM (ALPHABETICAL ORDER)

A Constant used in subroutine KANA
AERR Input, absolute error in the integral routine DCADRE
AK(99) KI(:{OJ?E comparison value of the K; Case 2

nondimensional evaluated from the user-supplied
comparison function at points defined by S

AKS(99) Ky /ov/ma calculated values of K Case 2

{nondimensional) at points defined by S

B Interim term for weight function calculations

c(5) Interpolating polynomial coefficients for KI data
D(5) Interpolating polynomial coefficients for "o data
08 Interim term for weight function calculation

DC 9R/3a interim term for weight function calculation
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DY(99)
DYA(99)

D2(99)
DZA(99)

EDS
ES(99)
EST
EY(99)

EZ(99)

PI
Q

R
RELERR
$(99)

Interim derivative term for DYA

1/o (BKIBa) derivative wer-t the crack length of Ky
Case 1 at points defined by S

Interim derivative term for DZA

1/c (anolsa) derivative wer+t the crack length of o
at points defined by S

Input, desired absolute accuracy in KI computation
(AKS-AK) 100/AK relative error in the computed KI
Current estimate of value of the integral by DCADRE

(YC-Y) 100/Y relative error in percents of interpolated
KI data at points defined by S

(ZC-Z) 100/Z relative error in percents of interpolated
o data at points defined by S

h, the weight function (subfunction)

Upper 1imit of the integral

Input, H material property

Error fiag for library subprograms PLSCF and DCADRE
Input, number of experimental data points

Input, number of points where K; should be evaluated for
Case 2 !

Stress distribution for the noncracked body at the crack
Tocation for Case 2 loading configuration (subfunction)

s

Lower 1imit of integral

Interim term for weight function calculation

Input, relative error in the integration routine DCADRE

Input, a/w, nondimensional crack length at point where
experiments were performed

Interim term for weight function calculations

Previous interim value for EST
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VA (EST-V), difference between last and current integration
estimate

W(99) Weight corresponding to each data point used in PLSCF
(currintly defined as -1 to give equal weight to each
point

WORK(25) Work array for PLSCF subroutine

X(99) Input, a/w, nondimensional crack length for points
where KI Case 2 should be evaluated

Y(99) Input, KI/ ov/ma, nondimensional KI’ experimental data

YA(99) KI/o, interpolated K for Case 1 at points defined by x

YC(99) KI/ gvYma, interpolated nondimensional KI for Case 1 at
points defined by $ ’

YK{99) KI/ ovma, interpolated nondimensional K} for Case 1 at
points defined by x

2(99) Input, nO'H/(Zoa), nondimensional crack mouth opening

ZA(99) no/o, interpolated o at the points defined by x

2C(99) nOH/(Zoa), interpolated nondimensional N, at points

defined by S

2K(99) nOH/(20a), interpolated nondimensional Ny at points {
defined by x ]

14. SEQUENCE OF INPUT DATA

No. of .

Card Variable Variables Real/ Fomat

Nurber per card Integer

1 H 1 Real Unformat ted

2 AERR, RELERR, EPS 3 Real Unformatted

3 M 1 Integer Unformatted

3 to (M+3) S(1),Y(1),Z(1) 3 Real Unformatted

M+4 N 1 Integer Unformatted

(M+5) to (M#N+5) X(I) 1 Real Unformatted
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15. SEQUENCE OF OUTPUT DATA

1. Interpolation polynomial coefficients for KI

2. Interpolation polynomial coefficients for o

3. Comparison table of actual to interpolated KI

4. Comparison table of actual to interpolated U

5. The following printout will appear only if singularities have
been met by subroutine DCADRE. Each time a singularity was met, a warning
statement is printed out followed by the values of the crack length
(X(I)), the distance from crack tip (Q), and the value of the error flag
(IER) for which the singularity occurred. Values of IER equal to 65 or
66 indicate that the singularity was successfully handled. If any other
value appears consult the IMSL Manual (Reference 26).

6. Comparison table of KI for Case 2 calculated values and supplied
comparison values.

16. LISTING AND RESULT SAMPLE

The following pages include a complete listing of the program and a
sample printout of results for uniform tension as Case 2 loading config-
uration.
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PROGRAN THS T6/76 OPT ey FUN &o70u70 09728779 18.07.02 PAGE 1
|} PROGRAN TH 5 (INPUT=Z8D,0UTPUT)
c
CO9%00s0ssss0sv000esenases CECEMBER 1979 PPLOITIIIINIIIINIGTTINIOIINEIIOOTSY
[+ OATA REQOUCTION FOR THSIS <0AN BAY-TIKVA
< (SEE THSIS APPENOIX (AFIT/ZCAE/ZAAZTI0-2 § FOR DETAILED ODESCRIPTION)
c
c

DIMENSION X(99),Y(99),7(99},5(99 , V(99 ,PAL99},YC(99) ,0YA(99),0V(
0991, EY(99),2K(99) , ZA 199}, 200990 ,174(99),02(99) (AK(99) )AKS(99) ,ESI(9
10 €9) ,C15),0(5) ¢WORK(28) ,M(99) ,EZ(9)
COMMON/DAN/G,To8,R, N8, NC
EXTERNAL F
Pleb,®ATANIS.0)
FIRSY CARD
READ IN M
READ® o
SECCOND CARD
READ IN THE FOLLOING TFARMS ON THZ SAME CARDCUNFORMATIED)
AERR-ARSOLUT ERROR IN THE INTEGRAL ROUTINE (DCANRE)
RELERR-RELATIVE FRROR TN THE INTZGRATION ROUTVINE(OCADRE)
EPS-NESIRED ASSOLUTE ACCURACY IN ANSKER
READ® SERR,RELERR,EPS
NEXT Ca  D-NUMBER IF EXPFRIMENTAL JATA POINTS
REAG® ;N
THE NEXT N CAROS CONTAINE THE EXPIRIMENTAL OATA THREE VALUES ON EACH
CARO-A/W, XK INON OIMENSIONAL) ,ETAININ OIMENSIONAL)= (UNFORMATTED)
V0 2 Ieg,n
READ® 4 S(1),¥ L), 2¢ 1)
NEXT CARO-N-NUMBER OF POINTS WHER'T X SHOULD BE EVALUATED FOR CASE 2
READ® \N
NEXT N CARDS-VALUES OF A/M AT WHIZH X SHOULO Bf EVALUATED (ONE VALUE PER
CARD-UNFORMATTED)
DO 17 I=1,N
READ® ,x(I)
33 PRINY 1
FORMAT (1H1,18X,"RESULTS™)
PRINT ® - sstanne®
PRINT® = =
PRINT® = =
(Y] PRINT®,™ =
PRINYS®,™ =
COMPUTE & LEAST SOUARE FORTH ORDER POLYNOMI&{ FOR X DATA AND PRINT OUT
POLYNOMIAL COEFFITIENTS C(S)eeesCl1) AND EFROR FLAG OF SUBROUTINE PLSCF
CALL XPOL (S, Y, M ,C,wnRK, W)
COMPUTE A LEAST SOUARF FORTH ORDER POLYNOMIAL FOR ETA DATA AND PRINT OUY
POLYNOMIAL COEFFITIENTS Oi5)esssDlL) AND ERRUR FLAG OF SUBROUTINE PLSCF
CALL EPOL(S,2,4,0,H0R%,W)
EVALUATE X AND ITS NERIVATIVES FRIOM THE LEAST SQUARE POLYNOMIAL
CALL EVEK (N, CoPI N, YK,NYA,YA,DY)
EVALUAYTE ETA ANJ ITS NFRIVATIVES FROM THE LEAST SOUARE POLYNOMIAL
CALL EVEETALN,0,H,N,7€,024,24,07)
COMPARE THE ACTUAL EXPERTMENTAL K DPATA WITH THE LEAST SOUARE FIT
CALL COPXI(S,Y,C M,vC,EY)
COMPARE THE ACTUAL FYPERINENTAL ETVU OATA W1TH THS LEAST SOUARE FIT
CALL COPETALS,”?,0,M,7C,EX)
COMPUTE COMPARISON VALUES FOR & ASE 2 (USER SUPPLIEN ROUTINE)
CALL WANA(X,Ny,AY,PT)
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IQOGRAN THS TerTe 0PTey FIN o776 09728779 18.07.02 PAGE 2
PRINTS = =
PRINT®," =
(1] PRINTS,™ =
PRINT®,= =
€ COMPUTE K FOR CASE 2 AND PRINT OUT A CQMPARISON TABLE BETMEEN THE CALCULATED
C  VALUES AND THE SUPPLIED COMPARISON VALUES
[
(1] PRINT® ,“THE FOLLOING PRINT OUT 15 FQOM THE NUMERICAL INTEGRATION™
PRINT® ,“SUBROUTINE (DCADRE) AND INDICATS THAT SINGULARITIES WHERE™
PRINT ®,“HANOLED™
PRINTS® = =
PRINT®,~  1ERERROR FLAG,JF 65 IR 6b ~SINGULARITIES WHERE SUCCESS
e SFULLY NANDLED,ANY ATHFP VALUE CONSULT INSL MANUAL”
PRINT®,~  X(I)=TRE CRACK LENGTH FOR WHICHM THE ERROR FLAGILER) INM
PLIES™

PRINT®,™ Q=DISTANCE FROM CRACX TIP RELATIVE TO HIOTH (T/H) FOR
OWHICH THE SINGULARITY WAS DBRTACTIOD™
79 PRINT® = =
PRINT®,” =
PRINT @, =
00 6 Is4,N
PRINT® = =
[ 1} PRINV®,= =
B8, (YA(I))®®2/(PI*He*2)
08216 ,°YA(II®OYA(L} 7 (PIOH®®2)
RELZACI) /XTI OO2-8,(YA(II)I®®22(PI*X(LI*HI* 2}
DCo=2,2¢ZAIT0 %2/ (XETII%®3=16,%CA(L)/(PI*X(IICH ®2)*0VA(TI*B.%(VA
(1] QLINI®O2/7 (PICIHOXLTI I 992) 02,0 ZALT) *OZALI) 2(X(T))®®2
G=X(})
TeH/CLPIOXLIN) O SICYA(T))
Va0,
Q=,000081
" 13 Gs01%, 3
ESTs OCADRF (F 30,6y AERR, RELE TR, ERROR, JER)
IF (IER.EQ.0) GO TO 2%
PRINT® "X ("3 1,")m", X1}
PRINT® ,"Qs™,Q
9 PRINY ®,"1€Re"™, IER
143 CONTINUVE
VASEST-V
IF (VA LLELEPS) 20 10 16
Ve EST
(11 6o 10 15
16 CONTINUE
AKS (T ) wEST
€S{I) v (AKS{ID=-AK(I)I®L08.7AK (1)
[ ) CONTINUE
109 PRINTS® ™ =
PRINT®,~ =

2
s 11113

PRINT®,” RESULTS FOR KX UNTIFORM TENSIOM USING THE WELGHT FUNCIIO
#N METHOD(K=NON DIWFNSTONAL™

PRINI® " ccssmsncncucvascccsucnonacarsanscsararsrenancrsancensoacanns
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IROGRAN THS

19
13

FINCTION F

FINCTION ¢

Te/T6 OPTat FIN 6 7¢076

PRINT®,™ =
PRINT® >  A/W = CRACK LENGTH RE.ATIVE TO WIOTH =

PRINT®,™  K-EXP = YALUES CALCULATED THMRDUGH THE WEIGH FUNCTION™

PRINT®,~  KeCAL = SUPPLIED COMPIRISON VALUES™
PRINT®,~ = RELATIVE ERROY IN X*
PRINT® ,» =

PRINT S~ =

PRINT® ™  A/u K-Exp K=CeL €
PRINT®,™ =

00 13 Isi,N

PRINT 30,X(1) ,AKS(Z) JANLE),ESLT)

FORMAT (LX o 0F 0.0 0N, 1F 8,0 2N 3F 8.0 )2X) 1F6,2)
CONTINUE

STOP~END OF PROGRAN™

ENO

TesT4 OPT=y FIN &oTokT0

FUNCTION FiX)

EXTERNAL P

COMMON/OAN/G,T,8,R,N8, NC

Fo(T/724)% (BeDB*XO0CONST202,%ROXD/ ( (3% NOROX*S2)*% 5)*P(X)
RETURN

END

TasT46 0PTay FIN &, 7076

FUNCTION P(X)
COMMONZDAN/G,T,8,R,NH,0C
Ps3,

RETURN

END
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SUSIOUTINE KPOL

10

19

2¢

SUBROUTINE EPOL

SUAROUTTINME EVEX

76778 0PI=t FIN a.70076 09/28/79 §8.07.02 PAGE

SUBROUTINE KPOL (X ,V oMy CyHORK ) W}

OIMENSION XU1),¥(1),CF) ,NORK (L), W L)

NOEGe &

NP sH

LIS L RS T

IN=D

CALL PLSCFIXyY, M NPy NDEG ¢NMAX,CoIN)XDo X0y WORKy IERD
PRINT®,« =

PRINT®,~ =

PRINT® = INTERPOLATION POLINORIAL FOR KX -
PRINT® = =

PRINT®,~ =

PRINT® ,~C(S)=",C(S5)

PRINT® ,“C (&) =", Cl4)

PRINT® ,~C{3)a~,C(D)

PRINT® ,~C(2)=",C(2)

PRINT®,~C (1)=™,C (1)

PRINY® >~ = .
PRINT®,“IER> ERROR FLAG-SEE ASO SOMPUTER SUBPROGRAN LIBRARY GUIDE
PRINT S ,“1ERs", JER

RETURN

END

Te/Th oPT =y FTN . 7476 09728/7T9  18,07.02 PAGE

SUBROUTINE EPOL (X ,ZyMs0,NORKH)
DIMENSION XU1),7(1),085) NORK(1), N (L)

NOEG= &

NP =N

IN=0

Wi1)=-q,

CALL PLSCF Xy Z W yNPyNDEG ) NMAX 40t Ny XDy X0, WORK, IER)
PRINT®,~ =

PRINT® ,~ =

PRINT»,~ INTERPOLATION POLINOMIAL FOQ €YA =
PRINT®,= =

PRINT DS} =™,0(5)

PRINT 0Ce)==,00(6)

PRINT o3 =",0())

PRINT 0{(2)e*,0(2)

PRINT®,~0(1)e™,D(1)

PRINT® = =

PRINT®,»]ER= ERROR FLAG-SEE ASO SOMPUTER SUBPROGRAM LIBRARY GUIDE™
PRINT® ,“JERe", [ER

RETURN

END

ThsTh orT=q FIN G .7e078 097287719 18.07.02 PAGE

SUBROUTINE EVEK(X,C,PI,N, YK, OYA,r&,0Y)

DIMENSION X11) ,G(5),YK{1),0YA{1),YA(1),0Y (1)

00 1 Isi,N

YK LI aC(S)OX () o LeC o X LI 3e (NP XLLN e 2+4C (220 X(L)eCIL)
YAID =YKIDI®(X(DI*PTI®*,5

DY (1) »4®CUS)®XIL)®* 3037 C(W)I®XIIIPO202,°CI3)OXI]) *CI2)
OYACI)a(PI®® ) (YXIIIZ(2,*X(IN100YCINIPX(ID**0,5

RETURN

END
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SUBIOUTINE COPK
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Th/Te OPTai FTIN 4.7¢076 09728779

1 SURROUTINE COPKX,YsCy¥yYC,EY)
DIMENSION X{1) 401D ,CEf),YCUL) (EF (1)
00 18 Isi,M
YCAID 3CIS)PMIT)**4sCILIOX(TI*303 () XLTIPP24C(2)*X (1) ¢CIL)
s 18 EV(D =(vC =Y (11)*100./Y (]}
PRINT®,> =
PRINT®,~ =
PRINTO,= =
PRINT® = *
10 PRINT®,“COMPERISON OF ACTUAL DAT\ TO INTERPOLATED DATA®
PRINT S =
PRINT®,= As4 - CRACK LENGTH RE.ATIVE TO WIOTH =
| PRINT®," K-EXP ACTUAL DATA™
| PRINT®,~  K-CAL INTERPOLATED JATA"
15 PRINT®,~ & RELATIVE ERROY IN X"
PRINT® = =
PRINT®,~ =
PRINT®,”  A/M K~EXP x-caL £ -
PRINT®,= =
20 00 & Isi,M
PRINT 3,X0I) 47 (1), YCLI) ,EV (LD
\ s FORMAT (1X02F6.A 0N 8F 8.8, 2Xp3F80 2K 1F642)
, CONTINUE
RETURN
23 EnD
SUBROUTINE COPETA Ia/7h  0PTsy FIN &4.7+476 09728779
1 SURROUTINE COPETA (X ,?,0,M,7C €7
DIMENSION X(1),7(8),0(F),2CC1) (E7 (1)
DO 49 Is1,M :
TCAII =045 I XCTI® Mo t4)OX(TI®®I0) ()0 XCII* 220D (2)OX(T) ¢D(1)
s 19 EZC(D =(IC(II=2(11)®100,/72¢1)
PRINT® = =
PRINT® ™ =
PRINTS,~ =
PRINT®,™ =
) PRINT+ ) "COMPERTSON OF ACTUAL OATA TO INTERPOLATED DATA®
INTO, =
PRINT#,* A/W « CRACK LENGTH RE.ATIVE TO WIDTH =
PRINT®,* ETA-EXP ACTUAL DATA™
PRINT®,~ ETA-CAL INTFRPOLATED JATA™
18 PRINT®,™ € RELATIVE ERROY IN X*
PRINT S, =
PRINT®,~ =
PRINT® = =
PRINT#,™ A/M  ETA=EXP  ETA-CAL £ -
20 PRINT®,= =
D0 7 1e1,0
PRINT 9,X (10,2013 ,7C (1Y, ET(I)
9 FORMAT (1X,8F6u by 0 Xy 4F Rob 20y 1F 800,20, 1F642)
r CONTI NUE
23 RETURN

END

18.07.02

18.07.02

PAGE

PAGE
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SUBROUTINE EVEETA TesT4  OPTmy FTIN &eT70078 09/20/719 30,8702

) SUBROUTINE EVEETA(X,0,HyNyZK,02A,24,00)

OIMENSION XUL)o4D(5) 42X18) ,DIACL),7A(2),D204)

00 5 Isi\N

XD 20(SIONILISOL oD (IS XITI®*I02(I v X(LISO20D(RIOX(II+D(S)
L AL 32K TI02.9%(3) /M

OZ (I} s4%0LB) (LIS T30 (MION(LICO202,50(3)9X(T) +D(2)

] OZA(I)e (2./H3S(DTLDIOYUTIOLKILN
RETURN
END

SURBRIUTINE KANA Te/Th  OPTey FIN 470070 09720779 18.07.02

1 SUBROUTINE KANAIX,NyAK,PY)
OIMENSION x{2) AKI{L)
00 20 I=1,N
Asx{1)erls2,
L AK{I) = L2, CTANCAY Z7ERTOXNETDY) SO ,5)% L. 78202,02°%(3)0o37%(1.-SINIA)
$)%°3,3/7C08(A))
n CONTINVE
RETURN
END
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RESULTS

INTERPILATION POLINOMIAL FOR K

C(S)s70.75542913721
Cin)==92,65527346502
Ci3Ims2,.954559608156
€(2)9-6,320725084317
Cl1)81.256607005434

JER~ ERROR FLAG-SEE ASD COMPUTER SUBPROGRAM LIBRARY GUIDE
IER=0

INTERPILATION POLINOMIAL FOR ETA

0(5)=210,3785059491
D(w)=-282.572732332
0(3)2150.7565048959
0€2)==32,16174824038
0(1)=3.952065733928

TER- ERROR FLAG-SEE ASD COMPUTER SUBPROGRAM LIRRARY GUIODE
LEReY

COMPERISON 07 ACTUAL OATA TO INTERPOLATED DATA

A/M = CRASK LENGTH RELATIVE TO MWIDTH
X-EXP AZTUAL DATA
K=CAL INTERPOLATEDN OATA

€ RELATIVE ERROR IN X

A K-Exe K-CAL €
«10% «9073 9667 .34
+«15086 1.0575 9776 =7.56
.20 1.0572 1.0545 ~.26
2328 1.1137 1.1060 -+ 69
22646 t.1007 1.1785 6.3%
«2666 1.1862 144746 -.98
+309 1.2368 1.2590 1.8
3460 13490 143244 -1.082
3978 L1e3804 1.4086 2. 06
«4360 1.6308 1.4696 2.14
4780 1.5646 145424 “1.42
4893 1.6651% 1.5710 ~5.08
+5780 Lenbay 1.8774 1.%9
114 2434060 2.3688 97
1517 3.9513 3,963 ~e 25
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COMPERLSON 0F ACTUAL OATA TO INTERPOLATED DATA

A/W ~ CRACK LENGTH RELATEIVE TO WIOVH
ETA-EXP AZTUAL DATA
ETA-CAL INTERPOLATED DATA

[3 RELATIVE ERROR IN 2%
o
A/M  ETA=EXP  ETA-CAL E i
1036 1.9440 1.9500 N T
1586 L6643 1.6491 “e91 13
“2064 1.56858% 1.6386  =3.09
2328 1,5163 1.6879 6,43
2646 1,6950 1.7933 5.80
«2666 1.8796 1.8013 k.18 !
+3096 1.9961 1.9923 .19
+3460 2.1660 2.1823 75
+3978 2.605% 2.4945  =6.26
v 360 2.7493 2.7696 oTh
Wo760 3.0632 J.1281 2.02
+4893 3.2866 3.2648 ~s66 1
+5780 4.5933 k6431 1.08 N
YT Y4 5.5208 6.5725 -.T8 ‘l‘
7847 12.0980 12.1082 .08

THE FOLLOING °PRINT OQUT IS FROM THE NUMERICAL INTEGRAYION
SUBROUTINE(OZADRE) AND INOICATS THAT SINGULARITIES WHERE
HANDLED

TER=ERROR FLAG,IF 65 OR 66 ~SINGULARITIES WHFRE SUCCESSFULLY HANOLED,ANY ATHER VALUE CONSULT INMSL MANUAL
X{I)=THE CIACK LENGTH FOR WHICH THE ERROR FLAG(IER) I4PLIES
Q=0 ISTANCE FROKN CRACK TIP RELATIVE TO WIOTK (T/K) FOR WHICH THE SINGULARITY WAS DETACTED

sev WARNING WITH FIX ERROR (IER = 65) FROM INSL ROUTINE DCADRE

Xt1)e,n

Qsg.E-21

T1ER=6S

®se WARNING 4ITH FIX ERRiR (IER = 85) FROM IMSL ROUTINE DCADRE

A(L)vat 3
Ont,.€-12

1€ER=65

®es MARNING WITHW FIX ERROR (l1ER = 65) FROM IMSL ROUTINE OCADRE
X(212, 15

Qei.f-10

JER=65

"; HAR:XNG AITH FIX ERROR (IER = 65) FIDH INSL ROUTINE DCADRE
£{2)=, 0

Om1.E-14

TER=65

%% WARNING NITH FIX ERROR (IER = 65) FROM IMSL ROUTIN® DCAORE
X(2)s,15

Q=1.E~12
LER63
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*es WARNING
Xt3)s,. 2
0=1.€-10
1ER=6S

99 WARNING
Xt3)s,2
Q=1,E~-14
IER=65

®%¢ WARNING
X{3)1a,2

Q=1 .E~42
1ER=6S

eos YARNING
Nly)=, 25
Q=1,E~10
IER=63

sos WARNING
Xlb)=, 25
O=1,.E~11
TER=65

sas WARNING
X{4)=,25
Q=t,.€-12
TER=6S

8¢ WARNING
X{51s,3
Q=1.E-9
IER=6S

99 H‘RN!“G
X512, 3
Qs1.E-10
TER=65

%% WARNING
Xi5)me 3
Qa1,.E-1t
TER=6S

.o “R"!uc
Xi{5)1s,3
Qe1,.E-42
1ER=65

(X 13 MRNING
Xi6) %, 35
Qe1.6-9
1ER=65

8% WARNING
X162, 35
Qs1.E-10
1ER=65

ses WARNING
X16) 9,35
0e1.E-11
1ER=65

sev UARNING
X(6) e, 35
Qe1.E-12
TERe6S

4lTH

WITH

MITH

NETH

WITH

WITH

NITH

MITH

ALt

L2 L]

AITH

wITH

MITH

WITH

Fix

FIX

F1Xx

FIX

FIx

FIx

FIx

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

EPROR

ERROR

{I1ER

(1ER

(1ER

(IER

tIER

(1ER

(1ER

(1ER

{1€ER

{IER

(1ER

(TER

(1ER

{1ER

65)

65)

63)

65)

65}

65}

65)

65)

85}

FROM

FROM

FROW

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FRONM

FROW

FROM

Inst

InsL

INSL

INSL

InsL

InsL

InsL

THSL

InsL

INSL

InsL

INSL

INSL

IMsL

ROUT INE

ROUTINE

ROUTINE

ROUTINE

ROUT INE

ROUT INE

ROUTINE

ROUTINE

ROUTINE

ROUT INE

ROUTINE

ROUTINE

ROUT INE

ROUT INE

DCAORE

DCADRE

OCADRE

DCADRE

DCADRE

OCADRE

OCADRE

OCAORE

OCADRE

DCADRE

DCADRE

DCADRE

OCAORE

NCADRE
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**° NARNLING
X{r)s. &
0:1.€-9
1ER=6S

®se WARNING
L X AT XY
Q=1.E~10
T1ER=4S

sss UARNING
X 2.6
Qs1.E~L1 -
1ER=65

ese GARNING
X(P)a. &
as1.E-12
1ER=65

ses WARNING
A18) =, 45
Qs1.€-9
1ER=65

sos LARNING
K(8)%.45
Q=1.E-10
1ER=65

s*s WARNING
A(B) w45
Q=1.E-t1
TER=65

®ss WARNING
X(9) =5

Q=1 .€-9
1ER=65

sss WARNING
X(9)a,5
Q=1,.€-10
1ER =65

®ss WARNING
X(9)=,5
Q=1.E-11
1ER=65

*%s HARNING
X(101=,.55
0=1,€~9
T1ER=65

s** YARNING
X(10)s.55
ast.E- 10
1ER=6S

s%% WARNING
X(10)s.5%
Q=3 ,€-143
TER=6S

**% WARNING
Xi14)mat
Qe1.£-9
1ER=63

oee VARNING
X(11}wo b

LINL

WITH

HITH

NITH

NITH

HITH

MITH

HITH

NITH

NITH

WITH

a1TH

HITH

L1e4.]

HETH

ria

FIX

FIx

FIX

FIx

Flx

FIx

FIx

CRRUN

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

EPROR

titn

(1ER

(JER

{IER

(1ER

({1ER

(JER

(1ER

(IER

(1Er

(1ER

(1ER

{1ER

{I1ER

{1ER

65)

635)

85)

&5)

45)

65)

65)

65)

65)

65)

65

FAUY Ao

FROM IHSL

FROM IMSL

FROM INSL

FRON INMSL

FRON INSL

FROM IHSL

FRON INSL

FROM INSL

FROM IHSL

FROM T HSL

FROM INSL

FROM T MSL

FROM TMSL

FROW LML

AUV AL LLaunL

ROUTINE OCADRE

ROUTINE DCADRE

ROUTINE DCADRE

ROUTINE OCADRE

ROUTINE DCADRE

ROUTINE OCADRE

ROUTINE OCADRE

ROUTINE OCADRE

ROUTINE DCADRE

ROUTINE OCADRE

ROUT INE DCAORE

ROUTINE OCADRE

ROUTINE DCAORE

ROUTINF DCADRE
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TER=65

®s% HARNING
Xi11)eeb
Q=1.€-11
TER=65

S0 NARNING
X(12)8.6%
Qei.€E-8
1ER=65

ses WARNING
X€(12)8.6%
Qs1,.E-9
1ER=§S

s*® UARNING
X(12)8,6%
Qul.E-10
IER=6S

*ee UARNING
N(12)8 .63
Qui.E-11
1ER=6S

o0 WARNING
X113)=,7
Qei.E-7
JER=66

0% WARNING
X($3)a,7
Qe1.E-8
1ER=66

®9s WARNING
LIRS IERY 4
Q=1.€-9
IER=66

0% WARNING
X{19)ue?
Get . E- 20
1ER»66

s WARNING
X1(313)s,7
Q=1.E-11
LTER=66

®8% WARNING
X(14)0,7%
Q=1,.E-8
JER=6S

Ses YARNING
Xil4)n, 78
Q=1,.E-9
TER=6S

®e% MARNING

oo WARNING
A(LN)e T8
Qui,E-11
TER=6S

{1ER

(1€R

(3Er

(1ER

(IER

(1ER

(1ER

(IER

{1ER

1IER

(IER

(IER

(1ER

FRON

FRON

FROM

FRON

FRON

FROM

FROM

FROM

FRONX

FRON

FROM

FROM

FROM

FROM

ST ey
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S MmN M fAA L1 aMi VELI = wue § e ATt hww e wusbiae
X(15)=.8

Q=1.E-7

TER=66

®es WARNING NITH FIX EKROR (XER = 66) FROM IMSL ROUTINE OCADRE
Xi3503.8

Q=1.E-8

1ER=266

S%¢ WARNING WITH FIX ERROR (IER = 66) FROM INSL ROUTINE OCADRE
X{15)=.4

Q=1,.E-9

1ER=66

®%e WARNING MITH FIX ERROR (IER = §6) FROM IMSL ROUTINE OCAQRE
X(15)=.8

Qe1,.E-10

TERs66

3% VARNING WITH FIX ERROR (IER = 66) FROM THSL ROUTINE OCADRE
X{1S)ned

Qe1,E-41

TER=66

RESULTS FOU K UNIFORM TENSION USING YHE WEIGHT FUNCTIDN HETHOD(K-NON DIMENSIONAL

E

A/M = CRACK LENGTH RELATIVE TO WIDTH

r
K-EXP ~ VALUES CALCULATED THROUGH THE MEIGH FUNGTION I
X-CAL - SUPPLIED COMPERISON VALUES Y@
3 = RELATIVE ERROR IN X p
.
¥
V] KeEXP K-CAL £ ;
«1000 1.2705  1.4957 6.26 B
+1500 1.2697 1.2682 12 !
.2000 1,400 1.3667 2.74 ;
+2500 1.5540 1.6961 4,01 ]
.3000 1.5858 1.6551 1.3 J
+3500 1.8170 1.8565  -2,13
+4000 1.9967 2.1080  -5.28 4
4508 2.2917 2.0261  =5.46
+5000 2.7719 2.8268 ~1.93
+5500 3.4752  3.3486 3.78
+6000 %.3636 4,0432 7,92 :
+6500 5.3158 4.9993 6,33
+7000 841832  6.3755 3,02
7500 Bs8662  8,4809 <-19.04
8808 7o3608  11.9926 ~38.79
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APPENDIX E
CRACK SHAPE--CONICAL APPROXIMATION

Following Orange (Reference 11), the shape of a crack can be
approximated by a conic section equation. Requiring that the crack
opening at the crack mouth will match the actual crack mouth opening
Nys One can write a general form for the conic section; equation;

ﬂ.)z- 2t +i<s>z
o (2+m) \2 2+4m \2 (E-1)

Figure E-1. Crack Opening Conical Approximation

where t is the distance from the crack tip, a is the crack length, and m
is the conic cection coefficient to be determined. The type of conical
section depends on m if

m<0 - ellipse
m=0 - parabola
0<m<e - hyperbola

m=o - a pair of straight lines

-
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In order to determine the unknown conic section coefficient m,
match the radius of curvature at the crack tip from the Equation E-1 to
the curvature resulting from the crack tip displacement field as expressed

in Equation 16.

Using the following definition for the curvature of a two-dimensional
curve defined by

y = f(x) (E-2)

the curvature K is given by

o7}
<
~

=
W

and the radius of curvature is

e

%] (E-4)
K

provided K # 0

If one uses the near crack tip displacement field from Equation 16,

. TH: (E-5)
t =g "
I
3t _ mH?
Tk " (E-6)
an 4K
and at the crack tip '
n=20
t = 0. 1
78
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From Equation E-6

at =
an 0 (E-7)
n=0
Also from Equation E-6
32t _ mH®

Substituting Equations E-7, E-8 into Equation E-3 and then using Equation
E-4, the radius of curvature at the crack tip from the crack tip displace-
ment field is
4K _?
R = — (E-9)
mH?

Now find the radius of curvature from the conic section Equation E-1

2 - 2
n? = an -t o+ mnf t?2
(2+m) a (2+m) a? (E-10)

Differentiate twice with respect to n

2n = AT 1 + My e . ot (E-11)
(2+4m)a °"  (2+m)al an
2 - 2 2
2= (24m)a an?  (2+m)a? L\3" an?

From Equations E-11 and E-12 at the crack tip
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The value

é_g. = 0

an

3%t _ (2+m)a \ ,
and 3n2 n 2 (E-13)

o

If Equations E-3 and E-4 are used, the radjus of curvature at the tip of
the conic section is

2

"o

R = ——
F+2)a (E-14)

Now, matching the radius of curvature at the crack tip of the conic section
(Equation E-14) to .he one that is derived from the crack tip displace-
ment field Equation E-9, one can determine the conic section coefficient

2
n H
- O
= —_— - 2
" " 2K_v a (E-15)
I

Thus, following Orange and substituting the stress intensity factor KI’
with the nondimensional stress intensity factor Y defined by the relation

K = YovYa

The value of m becomes;
2

n H
)
—“[2Yoa] 2

=1
|

(E-16)
where
y = £ (E-17)
ova i}
80
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